Details

Phase Behavior of Two-Dimensional Water Confined in Graphene Nanocapillaries


Phase Behavior of Two-Dimensional Water Confined in Graphene Nanocapillaries


Springer Theses

von: YinBo Zhu

106,99 €

Verlag: Springer
Format: PDF
Veröffentl.: 07.10.2020
ISBN/EAN: 9789811579578
Sprache: englisch

Dieses eBook enthält ein Wasserzeichen.

Beschreibungen

In this book, the authors use molecular dynamics simulations to conduct a comprehensive study of the compression/superheating limit and phase transition of 2D (monolayer, bilayer, and trilayer) water/ice constrained in graphene nanocapillaries. When subjected to nanoscale confinement and under ultrahigh pressure, water and ice behave quite differently than their bulk counterparts, partly because the van der Waals pressure can spark a water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquids. From a mechanical standpoint, this liquid-to-solid transformation characterizes the compression limit (or metastability limit) of 2D water. The findings presented here could help us to better understand the phase behavior of 2D confined water/ice.
Introduction.- Monolayer square-like ice between two graphene sheets.- Superheating of monolayer ice in graphene nanocapillaries.- AB-stacking bilayer square-like ice in graphene nanocapillaries.- AA-stacking bilayer ice in graphene nanocapillaries.- Trilayer ice in graphene nanocapillaries.- Compression limit of 2D water confined in graphene nanocapillaries.- Summary and future work.- Appendix A: Mechanical design on graphene-based materials.<p></p>
<div>Dr. YinBo Zhu is an Associate Research Fellow at the University of Science and Technology of China. His research activities chiefly focus on the mechanical behavior and design of micro- and nanostructural materials, two-dimensional water, and mass transfer under nano-confinement.</div><div><br></div><div>Dr. Zhu completed his B.S. in Engineering Mechanics at North China University of Water Resources and Electric Power in 2013, and completed his Ph.D. (advisor: Prof. HengAn Wu) in Solid Mechanics at the Department of Modern Mechanics, University of Science and Technology of China, in 2017.</div><div><br></div><div>He was subsequently a Postdoctoral Fellow (under the supervision of Prof. HengAn Wu) at the Department of Modern Mechanics, University of Science and Technology of China, from 2017 to 2019, prior to assuming his current position.</div>
In this book, the authors use molecular dynamics simulations to conduct a comprehensive study of the compression/superheating limit and phase transition of 2D (monolayer, bilayer, and trilayer) water/ice constrained in graphene nanocapillaries. When subjected to nanoscale confinement and under ultrahigh pressure, water and ice behave quite differently than their bulk counterparts, partly because the van der Waals pressure can spark a water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquids. From a mechanical standpoint, this liquid-to-solid transformation characterizes the compression limit (or metastability limit) of 2D water. The findings presented here could help us to better understand the phase behavior of 2D confined water/ice.<p></p>
Nominated as an outstanding Ph.D. thesis by the University of Science and Technology of China Presents a comprehensive study on the compression/superheating limit and phase transition of 2D water/ice constrained in graphene nanocapillaries Shares findings that could help us to better understand the phase behavior of 2D confined water/ice