Details

Electric Power and Energy Distribution Systems


Electric Power and Energy Distribution Systems

Models, Methods, and Applications
IEEE Press 1. Aufl.

von: Subrahmanyam S. Venkata, Anil Pahwa

103,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 23.09.2022
ISBN/EAN: 9781119838272
Sprache: englisch
Anzahl Seiten: 368

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Electric Power and Energy Distribution Systems</b> <p><b>Provides a comprehensive introduction to today’s electric power distribution systems, perfect for advanced students and industry professionals </b> <p>Due to growth of renewable resources and advances in information technology, electric power distribution systems have undergone significant changes over the past fifteen years. The expansion of technologies such as consumer rooftop solar panels, electric vehicles, smart energy storage, and automated metering infrastructure make planning and operating power distribution systems challenging. Integration of advanced technologies at the distribution level is critical for realizing higher efficiency, reliability, resiliency, and flexibility. <p><i>Electric Power and Energy Distribution Systems: Models, Methods, and Applications</i> provides comprehensive coverage of the key aspects of conventional and emerging distribution systems, including modeling, methodologies, analysis, planning, economics, distribution automation, reliability, grounding, protection, power quality, and distributed energy resources. Written by experts with decades of experience in academia and industry, this textbook integrates theory and practice to present a well-balanced treatment of topics relevant to modern electric power distribution systems. Detailed chapters address modeling of distribution system components, load characteristics and optimal selection of devices, microgrids and other types of energy resources, the challenges associated with the planning and operation of distribution systems, and more. <ul><li>Covers a wide range of both legacy and contemporary issues supported by rigorous analysis and practical insights </li> <li>Provides in-depth examination of outage management, voltage control, system restoration, and other operational functions </li> <li>Features real-world case studies of distribution automation functions in urban and rural power systems </li> <li>Discusses technologies for distributed energy resources (DER) with a focus on wind, solar, and battery storage </li> <li>Describes fundamental economics in the context of power distribution systems, such as the impact of tariffs on selling electricity to consumers of different types </li> <li>Explains the architecture of distribution system protection, including fuses, reclosers, overcurrent relays, and grounding practices </li></ul> <p>The ideal textbook for advanced undergraduate and first-year graduate courses, <i>Electric Power and Energy Distribution Systems: Models, Methods, and Applications</i> is also an excellent reference for professionals with limited prior knowledge about distribution systems.
<p>Biography xix</p> <p>Preface xxi</p> <p>Organization of the Book xxiii</p> <p>Acknowledgments xxv</p> <p>About the Companion Website xxvi</p> <p><b>1 Introduction </b><b>1</b></p> <p>1.1 Prologue 1</p> <p>1.2 The Past 1</p> <p>1.3 The Present 2</p> <p>1.4 The Future 2</p> <p>1.5 New Developments 3</p> <p>1.6 Epilogue 3</p> <p>1.7 The Electric Power System 4</p> <p>1.8 Distribution System Devices 5</p> <p>1.8.1 Substation Devices 6</p> <p>1.8.1.1 Power Transformers 6</p> <p>1.8.1.2 Switchgear 7</p> <p>1.8.1.3 Compensating Devices 7</p> <p>1.8.1.4 Protection Equipment 8</p> <p>1.8.1.5 Control and Monitoring Devices 8</p> <p>1.8.2 Primary System Components 8</p> <p>1.8.2.1 Feeders and Laterals 9</p> <p>1.8.2.2 Switches 9</p> <p>1.8.2.3 Compensating Devices 10</p> <p>1.8.2.4 Protection Equipment 10</p> <p>1.8.2.5 Control and Monitoring Devices 11</p> <p>1.8.2.6 Distribution Transformers 11</p> <p>1.8.2.7 Types of Primary Systems 11</p> <p>1.8.3 Secondary System Components 11</p> <p>1.9 Frequently Asked Questions on Distribution Systems 12</p> <p>Reference 12</p> <p><b>2 Distribution System Transformers </b><b>13</b></p> <p>2.1 Definition 13</p> <p>2.2 Types of Distribution Transformers 13</p> <p>2.2.1 Overhead Transformers 13</p> <p>2.2.2 Underground Transformers 14</p> <p>2.3 Standards 14</p> <p>2.3.1 Loading of Transformers 14</p> <p>2.3.2 Types of Cooling 15</p> <p>2.3.2.1 OA – Oil-Immersed Self-Cooled 15</p> <p>2.3.2.2 OA/FA – Oil-Immersed Self-Cooled/Forced-Air Cooled 15</p> <p>2.3.2.3 OA/FA/FOA – Oil-immersed Self-Cooled/Forced-Air Cooled/Forced-Oil Forced-Air Cooled 16</p> <p>2.3.2.4 FOA – Oil-Immersed Forced-Oil Cooled with Forced-Air Cooled 16</p> <p>2.3.2.5 OW– Oil-ImmersedWater Cooled 16</p> <p>2.3.2.6 FOW– Oil-Immersed Forced-Oil Cooled with Forced-Water Cooled 17</p> <p>2.3.2.7 AA – Dry-Type Self-cooled 17</p> <p>2.3.2.8 AFA – Dry-Type Forced-Air Cooled 17</p> <p>2.3.2.9 AA/FA – Dry-Type Self-cooled/Forced-Air Cooled 17</p> <p>2.3.3 Terminal Markings and Polarity 17</p> <p>2.3.4 Insulation Class 17</p> <p>2.4 Single-Phase Transformer 18</p> <p>2.4.1 Model for a Single-Phase Transformer 18</p> <p>2.4.2 Performance Analysis 20</p> <p>2.4.3 Regulation 20</p> <p>2.4.4 Taps 21</p> <p>2.5 Distribution Transformer Connections 21</p> <p>2.5.1 Example 22</p> <p>2.5.2 Parallel Operation of Three-wire Transformers 23</p> <p>2.5.3 Single-Phase Autotransformers 25</p> <p>2.6 Three-Phase Transformer Connections 26</p> <p>2.6.1 Analysis of Y/Δ Transformer with Unbalanced Load 27</p> <p>2.6.2 Analysis of Y/Y Transformer 29</p> <p>2.6.3 Three-winding Transformer 31</p> <p>Problems 33</p> <p>References 34</p> <p><b>3 Distribution Line Models </b><b>35</b></p> <p>3.1 Overview 35</p> <p>3.2 Conductor Types and Sizes 35</p> <p>3.2.1 Sizes 35</p> <p>3.2.2 Overhead Feeders 35</p> <p>3.2.3 Underground Feeders 36</p> <p>3.2.4 Conductor Data 37</p> <p>3.3 Generalized Carson’s Models 38</p> <p>3.4 Series Impedance Models of Overhead Lines 39</p> <p>3.4.1 Three-phase Line 39</p> <p>3.4.2 Single- and Two-phase Line Modeling 42</p> <p>3.4.3 Three-phase Line Example 42</p> <p>3.5 Series Impedance Models of Underground Lines 44</p> <p>3.5.1 Nonconcentric Neutral Cables 44</p> <p>3.5.2 Concentric Neutral Cables 45</p> <p>3.5.2.1 Single-phase Cable 45</p> <p>3.5.2.2 Three-phase Cable 46</p> <p>Problems 49</p> <p>References 52</p> <p><b>4 Distribution System Analysis </b><b>53</b></p> <p>4.1 Introduction 53</p> <p>4.2 Modeling of Source Impedance 53</p> <p>4.3 Load Models 54</p> <p>4.3.1 Load Model I 54</p> <p>4.3.2 Load Model II 56</p> <p>4.3.3 Load Model III 56</p> <p>4.3.4 Load Model IV 57</p> <p>4.4 Distributed Energy Resources (DERs) 57</p> <p>4.5 Power Flow Studies 61</p> <p>4.5.1 Line Model 62</p> <p>4.5.2 Load and DER Model 63</p> <p>4.5.3 Computing Currents 65</p> <p>4.5.4 Power Flow Algorithm 66</p> <p>4.6 Voltage Regulation 68</p> <p>4.6.1 Voltage Regulation Definition 68</p> <p>4.6.2 Approximate Method for Voltage Regulation 69</p> <p>4.6.3 Voltage Drop on Radial Feeders with Uniformly Distributed Load 72</p> <p>4.6.4 Voltage Drop on a Radial Feeder Serving a Triangular Area 74</p> <p>4.7 Fault Calculations 75</p> <p>4.7.1 Prefault System 76</p> <p>4.7.2 Three-phase Fault 78</p> <p>4.7.3 Double-Line-to-Ground (DLG) Fault 79</p> <p>4.7.4 Single-Line-to-Ground (SLG) Fault 80</p> <p>4.7.5 Line-to-Line (LL) Fault 80</p> <p>4.7.6 Symmetrical Component-based Fault Analysis 81</p> <p>4.7.6.1 Three-phase Fault 82</p> <p>4.7.6.2 DLG Fault 83</p> <p>4.7.6.3 SLG Fault 84</p> <p>4.7.6.4 LL Fault 85</p> <p>Problems 86</p> <p>References 88</p> <p><b>5 Distribution System Planning </b><b>89</b></p> <p>5.1 Introduction 89</p> <p>5.2 Traditional vs. Modern Approaches to Planning 90</p> <p>5.3 Long-term Load Forecasting 90</p> <p>5.4 Load Characteristics 92</p> <p>5.4.1 Customer Classes 92</p> <p>5.4.2 Loads in a Modern House 94</p> <p>5.4.3 Time Aggregation 95</p> <p>5.4.4 Diversity and Coincidence 96</p> <p>5.4.5 Demand Factor 101</p> <p>5.4.6 Load Duration Curve 101</p> <p>5.4.7 Load Factor 103</p> <p>5.4.8 Loss Factor 103</p> <p>5.5 Design Criteria and Standards 105</p> <p>5.5.1 Voltage Standards 105</p> <p>5.5.2 Conservation Voltage Reduction 106</p> <p>5.6 Distribution System Design 107</p> <p>5.6.1 Substation Design 107</p> <p>5.6.2 Design of Primary Feeders 108</p> <p>5.6.3 Design of Secondary Systems 111</p> <p>5.6.4 Underground Distribution Systems 111</p> <p>5.6.5 Rural vs. Urban Systems 113</p> <p>5.7 Cold Load Pickup (CLPU) 114</p> <p>5.7.1 CLPU Fundamentals 114</p> <p>5.7.2 CLPU Models 115</p> <p>5.7.3 Impacts of CLPU 116</p> <p>5.7.4 Operating Limits 117</p> <p>5.8 Asset Management 117</p> <p>Problems 118</p> <p>References 121</p> <p><b>6 Economics of Distribution Systems </b><b>123</b></p> <p>6.1 Introduction 123</p> <p>6.2 Basic Concepts 123</p> <p>6.2.1 Interest Rate 123</p> <p>6.2.2 Inflation 124</p> <p>6.2.3 Discount Rate 124</p> <p>6.2.4 Time Value of Money 124</p> <p>6.2.5 Annuity 125</p> <p>6.2.6 PresentWorth of Annuity 125</p> <p>6.2.7 PresentWorth of Geometric Series 125</p> <p>6.3 Selection of Devices: Conductors and Transformers 126</p> <p>6.3.1 Distribution Feeder Conductors 126</p> <p>6.3.1.1 Conductor Economics 126</p> <p>6.3.1.2 Reach of Feeders 129</p> <p>6.3.1.3 Optimal Selection of Conductors for Feeders 132</p> <p>6.3.1.4 Example 135</p> <p>6.3.2 Economic Evaluation of Transformers 136</p> <p>6.4 Tariffs and Pricing 138</p> <p>6.4.1 Electricity Rates 138</p> <p>6.4.1.1 Energy 138</p> <p>6.4.1.2 Demand 139</p> <p>6.4.1.3 Time of Use (TOU) 139</p> <p>6.4.1.4 Critical Peak Pricing (CPP) 139</p> <p>6.4.1.5 Critical Peak Rebates (CPRs) 139</p> <p>6.4.1.6 Interruptible Rates 140</p> <p>6.4.1.7 Power Factor-Based Rates 140</p> <p>6.4.1.8 Real-Time Price 140</p> <p>6.4.1.9 Net Metering 140</p> <p>6.4.2 Understanding Electricity Bills 141</p> <p>6.4.2.1 Monthly Rate 141</p> <p>6.4.3 Rural Electric Cooperatives (RECs) 142</p> <p>6.4.4 Municipal Utilities 142</p> <p>Problems 143</p> <p>References 146</p> <p><b>7 Distribution System Operation and Automation </b><b>147</b></p> <p>7.1 Introduction 147</p> <p>7.2 Distribution Automation 148</p> <p>7.3 Communication Infrastructure 151</p> <p>7.4 Distribution Automation Functions 151</p> <p>7.4.1 Outage Management 153</p> <p>7.4.2 Feeder Reconfiguration 154</p> <p>7.4.3 Voltage and var Management 155</p> <p>7.4.3.1 Transformer LTC Operation 155</p> <p>7.4.3.2 Capacitor Operation 156</p> <p>7.4.3.3 Regulator Operation 157</p> <p>7.4.3.4 Smart Inverters 157</p> <p>7.4.4 Monitoring and Control 159</p> <p>7.4.4.1 Transformer Life Extension 159</p> <p>7.4.4.2 Recloser/Circuit Breaker Monitoring and Control 160</p> <p>7.5 Cost–Benefit of Distribution Automation 160</p> <p>7.5.1 Higher Energy Sales 162</p> <p>7.5.2 Reduced Labor for Fault Location 162</p> <p>7.5.3 O&M of Switches and Controllers 162</p> <p>7.5.4 Lesser Low-Voltage Complaints 162</p> <p>7.6 Cost–Benefit Case Studies 163</p> <p>References 165</p> <p><b>8 Analysis of Distribution System Operation Functions </b><b>169</b></p> <p>8.1 Introduction 169</p> <p>8.2 Outage Management 169</p> <p>8.2.1 Trouble Call Analysis 171</p> <p>8.2.1.1 Outage Location Using Escalation Methods 172</p> <p>8.2.1.2 Rule-Based Escalation 173</p> <p>8.2.1.3 Test Cases 175</p> <p>8.3 Voltage and var Control 178</p> <p>8.3.1 Load Tap Changer 178</p> <p>8.3.2 Line Regulators 179</p> <p>8.3.3 Capacitors 179</p> <p>8.3.4 Capacitor Placement 180</p> <p>8.3.4.1 Illustrative Example 181</p> <p>8.3.5 Capacitor Switching and Control 185</p> <p>8.4 Distribution System Reconfiguration 185</p> <p>8.4.1 Multiobjective Reconfiguration Problem 185</p> <p>8.4.1.1 Minimization of Real Loss 186</p> <p>8.4.1.2 Transformer Load Balancing 186</p> <p>8.4.1.3 Minimization of Voltage Deviation 187</p> <p>8.4.2 Illustrative Example 187</p> <p>8.5 Distribution System Restoration 188</p> <p>8.5.1 Step-by-Step Restoration 189</p> <p>8.5.2 Restoration Times 191</p> <p>8.5.3 Derivation of Restoration Times 192</p> <p>8.5.4 Optimal Operation and Design for Restoration During CLPU 193</p> <p>8.5.4.1 Thermally Limited System 193</p> <p>8.5.4.2 Voltage Drop Limited System 194</p> <p>References 195</p> <p><b>9 Distribution System Reliability </b><b>197</b></p> <p>9.1 Motivation 197</p> <p>9.2 Basic Definitions 198</p> <p>9.3 Reliability Indices 201</p> <p>9.3.1 Basic Parameters 201</p> <p>9.3.2 Sustained Interruption Indices 202</p> <p>9.3.2.1 System Average Interruption Frequency Index (SAIFI) 202</p> <p>9.3.2.2 System Average Interruption Duration Index (SAIDI) 202</p> <p>9.3.2.3 Customer Average Interruption Duration Index (CAIDI) 203</p> <p>9.3.2.4 Customer Total Average Interruption Duration Index (CTAIDI) 203</p> <p>9.3.2.5 Customer Average Interruption Frequency Index (CAIFI) 203</p> <p>9.3.2.6 Average Service Availability Index (ASAI) 203</p> <p>9.3.2.7 Customers Experiencing Multiple Interruptions (CEMI<i>n</i>) 204</p> <p>9.3.2.8 Customers Experiencing Long Interruption Durations (CELID) 204</p> <p>9.3.3 Load-based Indices 204</p> <p>9.3.3.1 Average System Interruption Frequency Index (ASIFI) 204</p> <p>9.3.3.2 Average System Interruption Duration Index (ASIDI) 205</p> <p>9.3.4 Momentary Interruption Indices 205</p> <p>9.3.4.1 Momentary Average Interruption Frequency Index (MAIFI) 205</p> <p>9.3.4.2 The Momentary Average Interruption Event Frequency Index (MAIFI<i>E</i>) 205</p> <p>9.3.4.3 Customers Experiencing Multiple Sustained Interruption and Momentary Interruption Events Index (CEMSMI<i>n</i>) 205</p> <p>9.3.5 Sustained Interruption Example 206</p> <p>9.3.6 Momentary Interruption Example 208</p> <p>9.4 Major Event Day Classification 209</p> <p>9.5 Causes of Outages 210</p> <p>9.5.1 Trees 211</p> <p>9.5.2 Lightning 211</p> <p>9.5.3 Wind 212</p> <p>9.5.4 Icing 213</p> <p>9.5.5 Animals/Birds 213</p> <p>9.5.6 Vehicular Traffic 214</p> <p>9.5.7 Age of Components 214</p> <p>9.5.8 Conductor Size 214</p> <p>9.6 Outage Recording 214</p> <p>9.7 Predictive Reliability Assessment 216</p> <p>9.7.1 Component Failure Models 216</p> <p>9.7.2 Network Reduction 217</p> <p>9.7.3 Markov Modeling 219</p> <p>9.7.4 Failure Modes and Effects Analysis (FMEA) 223</p> <p>9.7.4.1 FMEA Method Assumptions 223</p> <p>9.7.4.2 FMEA Procedure 223</p> <p>9.7.5 Monte Carlo Simulation 225</p> <p>9.8 Regulation of Reliability 226</p> <p>Problems 227</p> <p>References 229</p> <p><b>10 Distribution System Grounding </b><b>231</b></p> <p>10.1 Basics of Grounding 231</p> <p>10.1.1 Need for Grounding 231</p> <p>10.1.2 Approaches for Grounding 231</p> <p>10.1.3 Effects of Grounding on System Models 233</p> <p>10.2 Neutral Grounding 233</p> <p>10.2.1 Neutral Shift Due to Ground Faults 233</p> <p>10.2.2 Types of Neutral Grounding 234</p> <p>10.2.3 Standards for Neutral Grounding 234</p> <p>10.3 Substation Safety 234</p> <p>10.4 National Electric Safety Code (NESC) 236</p> <p>10.5 National Electric Code (NEC) 236</p> <p>References 238</p> <p><b>11 Distribution System Protection </b><b>239</b></p> <p>11.1 Overview and Philosophy 239</p> <p>11.2 Role of Protection Studies 240</p> <p>11.3 Protection of Power-carrying Devices 241</p> <p>11.4 Classification of Protective and Switching Devices 241</p> <p>11.4.1 Single-action Fuses 241</p> <p>11.4.1.1 Expulsion Fuses 242</p> <p>11.4.1.2 Vacuum Fuses 243</p> <p>11.4.1.3 Current-limiting Fuses 243</p> <p>11.4.1.4 Distribution Fuse Cutouts 244</p> <p>11.4.2 Automatic Circuit Reclosers 244</p> <p>11.4.2.1 Recloser Classifications 247</p> <p>11.4.3 Sectionalizers 247</p> <p>11.4.4 Circuit Breakers 249</p> <p>11.4.5 Time Overcurrent Relays 250</p> <p>11.4.6 Static or Solid-state Relays 254</p> <p>11.4.7 Digital or Numerical Relays 254</p> <p>11.4.8 Load Break Switch 255</p> <p>11.4.9 Circuit Interrupter 255</p> <p>11.4.10 Disconnecting Switch 255</p> <p>11.4.11 Sectionalizing Switch 255</p> <p>11.4.12 Example Distribution System 255</p> <p>11.5 New Generation of Devices 256</p> <p>11.5.1 Smart Switching Devices 256</p> <p>11.5.1.1 Smart Fuses 257</p> <p>11.5.1.2 Smart Reclosers (Interrupters) 257</p> <p>11.5.1.3 Smart Circuit Breakers 257</p> <p>11.6 Basic Rules of Classical Distribution Protection 257</p> <p>11.6.1 Operational Convention for Protective Devices 258</p> <p>11.6.2 Protecting Feeder Segments and Taps 258</p> <p>11.7 Coordination of Protective Devices 258</p> <p>11.7.1 General Coordination Rule 259</p> <p>11.7.2 Fuse–Fuse Coordination 259</p> <p>11.7.2.1 Model for Fuses 259</p> <p>11.7.2.2 Rule for Fuse–Fuse Coordination 260</p> <p>11.7.3 Recloser–Fuse Coordination 262</p> <p>11.7.4 Recloser–Sectionalizer Coordination 270</p> <p>11.7.4.1 Rule for Coordination 270</p> <p>11.7.5 Circuit Breaker–Recloser Coordination 270</p> <p>11.7.5.1 Models for Relay-controlled Circuit Breakers 270</p> <p>11.7.5.2 Rule for Coordination 270</p> <p>11.8 New Digital Sensing and Measuring Devices 272</p> <p>11.8.1 Phasor Measurement Units (PMUs) 272</p> <p>11.8.2 Microphasor Measurement Units 272</p> <p>11.8.3 Optical Line Current Sensors 273</p> <p>11.8.4 Optical Voltage Sensors 274</p> <p>11.8.5 Digital Pressure and Temperature Sensors 274</p> <p>11.8.6 Evolving Sensors 274</p> <p>11.9 Emerging Protection System Design and Coordination 274</p> <p>Problems 275</p> <p>References 277</p> <p><b>12 Power Quality for Distribution System </b><b>279</b></p> <p>12.1 Definition of Power Quality 279</p> <p>12.2 Impacts of Power Quality 280</p> <p>12.2.1 The Customer Side 280</p> <p>12.2.2 The Utility Side 281</p> <p>12.2.3 Importance of Power Quality 281</p> <p>12.2.4 Cost of Power Quality 281</p> <p>12.3 Harmonics and PQ Indices 281</p> <p>12.3.1 Total Harmonic Distortion (THD) 281</p> <p>12.3.1.1 Properties of THD 282</p> <p>12.3.2 Total Demand Distortion (TDD) 283</p> <p>12.3.3 Power Factor (PF) 283</p> <p>12.3.4 Standards for Harmonic Control 284</p> <p>12.4 Momentary Interruptions 286</p> <p>12.5 Voltage Sag and Swell 286</p> <p>12.5.1 Definition 286</p> <p>12.5.2 ITI (CBEMA) Curve 287</p> <p>12.6 Flicker 289</p> <p>Problems 290</p> <p>References 290</p> <p><b>13 Distributed Energy Resources and Microgrids </b><b>293</b></p> <p>13.1 Introduction 293</p> <p>13.2 DER Resources and Models 293</p> <p>13.2.1 Wind Generation 293</p> <p>13.2.2 Solar Generation 295</p> <p>13.2.3 Battery Energy Storage System (BESS) 296</p> <p>13.2.4 Microturbine 298</p> <p>13.2.5 Electric Vehicles 298</p> <p>13.3 Interconnection Issues 299</p> <p>13.4 Variable Solar Power 299</p> <p>13.5 Microgrids 303</p> <p>13.5.1 Microgrid Types by Supply and Structure 303</p> <p>13.5.1.1 ac Microgrids 303</p> <p>13.5.1.2 dc Microgrids 304</p> <p>13.5.1.3 Hybrid Microgrids 305</p> <p>13.5.1.4 Networked Microgrids 305</p> <p>13.5.2 Microgrid Modes of Operation 305</p> <p>13.5.2.1 Grid-Connected Mode 305</p> <p>13.5.2.2 Islanded Mode 306</p> <p>13.5.3 Grid-Following vs. Grid-Forming Inverters 308</p> <p>13.5.4 Microgrid Protection Challenges and Requirements 309</p> <p>13.5.5 Examples of Microgrid in Operation 310</p> <p>13.5.5.1 CERTS Microgrid 310</p> <p>13.5.5.2 IIT Microgrid 311</p> <p>13.5.5.3 Philadelphia Navy Yard Microgrid 312</p> <p>13.6 Off-Grid Electrification 312</p> <p>13.6.1 Designing Off-Grid Systems 313</p> <p>13.6.1.1 Load Estimation 313</p> <p>13.6.1.2 Resource Assessment 313</p> <p>13.6.1.3 Optimal System Design 313</p> <p>13.6.1.4 Other Factors 314</p> <p>References 314</p> <p><b>Appendix A Per-unit Representation </b><b>317</b></p> <p>A.1 Single-phase Systems 317</p> <p>A.2 Three-phase Systems 318</p> <p>A.2.1 Per-unit Values for Δ-Connected Systems 318</p> <p>A.2.2 Per-unit Values for Δ-Connected Systems 319</p> <p>A.3 Base Values for Transformers 319</p> <p>A.4 Change of Base 320</p> <p>A.5 Advantages of Per-unit Representation 320</p> <p><b>Appendix B Symmetrical Components </b><b>323</b></p> <p>Index 327</p>
<p><b>Subrahmanyam S. Venkata, PhD,</b> is Affiliate Professor of Electrical and Computer Engineering at the University of Washington and President of Venkata Consulting Solutions, LLC, USA. <p><b>Anil Pahwa, PhD,</b> is University Distinguished Professor and Logan-Fetterhoof Electrical and Computer Engineering Faculty of Distinction Chair in Department of Electrical and Computer Engineering at Kansas State University, USA.
<p><b>Provides a comprehensive introduction to today’s electric power distribution systems, perfect for advanced students and industry professionals </b> <p>Due to growth of renewable resources and advances in information technology, electric power distribution systems have undergone significant changes over the past fifteen years. The expansion of technologies such as consumer rooftop solar panels, electric vehicles, smart energy storage, and automated metering infrastructure make planning and operating power distribution systems challenging. Integration of advanced technologies at the distribution level is critical for realizing higher efficiency, reliability, resiliency, and flexibility. <p><i>Electric Power and Energy Distribution Systems: Models, Methods, and Applications</i> provides comprehensive coverage of the key aspects of conventional and emerging distribution systems, including modeling, methodologies, analysis, planning, economics, distribution automation, reliability, grounding, protection, power quality, and distributed energy resources. Written by experts with decades of experience in academia and industry, this textbook integrates theory and practice to present a well-balanced treatment of topics relevant to modern electric power distribution systems. Detailed chapters address modeling of distribution system components, load characteristics and optimal selection of devices, microgrids and other types of energy resources, the challenges associated with the planning and operation of distribution systems, and more. <ul><li>Covers a wide range of both legacy and contemporary issues supported by rigorous analysis and practical insights </li> <li>Provides in-depth examination of outage management, voltage control, system restoration, and other operational functions </li> <li>Features real-world case studies of distribution automation functions in urban and rural power systems </li> <li>Discusses technologies for distributed energy resources (DER) with a focus on wind, solar, and battery storage </li> <li>Describes fundamental economics in the context of power distribution systems, such as the impact of tariffs on selling electricity to consumers of different types </li> <li>Explains the architecture of distribution system protection, including fuses, reclosers, overcurrent relays, and grounding practices </li></ul> <p>The ideal textbook for advanced undergraduate and first-year graduate courses, <i>Electric Power and Energy Distribution Systems: Models, Methods, and Applications</i> is also an excellent reference for professionals with limited prior knowledge about distribution systems.

Diese Produkte könnten Sie auch interessieren:

Uncertainty in the Electric Power Industry
Uncertainty in the Electric Power Industry
von: Christoph Weber
PDF ebook
106,99 €
Interfacial Transport Phenomena
Interfacial Transport Phenomena
von: John C. Slattery, Leonard Sagis, Eun-Suok Oh
PDF ebook
213,99 €
Constructal Theory of Social Dynamics
Constructal Theory of Social Dynamics
von: Adrian Bejan, Gilbert W. Merkx
PDF ebook
213,99 €